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Abstract
Bent Boolean functions are important in the encoding/decoding of secure messages. Because they

are the most nonlinear of all functions, they are the least susceptible to linear attack. However, bent
functions are rare and difficult to discover. The only known way to enumerate all bent functions is by
a sieve in which many prospective functions are tested.

This is a tutorial description of the process of bent Booleanfunction discovery by a reconfigurable
computer. Specifically, we discuss the use of SRC Computers’SRC-6 reconfigurable computer in
sieving through a large number of functions. We show why thisprocess is much faster than on a con-
ventional computer (up to 60,000 times), and we discuss the circular pipeline as a method to improve
the throughput even further. The circular pipeline takes advantage of the fact that most functions pass
not even one test for bentness. The improvement in throughput due to the circular pipeline depends on
the relationship between distances among functions, but itis approximately 500 times better than our
present throughput.

1 Introduction

In ancient times, the encryption of messages was likely to have been as simple as writing on parchment,
since few people could read. However, as more people became literate, encryption had to become more
sophisticated. A common encryption method that has survived to modern times is substitution – replacing
”e” with ”p”, ”t” with ”i”, ... , for example. A consistent substitution, such asalwaysreplacing ”e” with
”p”, ”t” with ”i”, ... is relatively easy to decode. With enough ciphertext and patience, one can, by hand,
decode the message. You simply observe that certain lettersare more frequent than others. For example,
in English, ”e” occurs about 15% of the time and in German, about 17% of the time, versus about 4% if
all letters were equally likely. With a computer, breaking the code becomes trivial, especially if it stores
statistics on the occurrence of letters in plaintext, statistics on letters that occur at the beginning of words,
statistics on combinations of letters, and dictionaries.

To avoid the vulnerabilities of consistent substitution, cryptologists have used keystreams. Often a
binary keystream of (pseudo)random bits is exclusive ORed with the bits encoding letters. In this way,
each plaintext letter is encoded as a different cyphertext letter each time.

For more than 50 years, cryptologists have studied the use ofBoolean functions in keystreams. In-
deed, Shannon [11] discussed the use ofdiffusionandconfusionin secure communications. Diffusion
occurs when a small change in the input text creates a large change in the encoded text. Confusion occurs
when the nonlinearity of the system creates a hurdle againstdecryption using a linear attack.

The most nonlinear of all Boolean functions are the bent functions. Introduced in 1976 by Rothaus
[7], bent functions are as far away from linear functions as possible. By ”far”, we mean in the Hamming
distance between their truth tables. However, there existsa paradox. It is easy to identify whether a given
functionf is bent. One simply applies a distance test. On the other hand, it is an entirely different matter
to efficiently generate all bent functions. Some constructions exist for generating bent functions from
other bent functions. However, an efficient way to generateall bent functions remains to be discovered.

In this paper, we present a sieve process in which many prospective functions are tested for bentness.
We show results obtained from this approach. A special feature of this analysis is the use of a recon-
figurable computer, the SRC-6. With this approach, we are able to achieve a speedup of 60,000 over a
conventional computer.

In the next section, we introduce the background and notation. In Section 3, we discuss the program-
ming of a reconfigurable computer for generating bent functions. Next, we discuss a method to improve
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the throughput of the reconfigurable computer, and we show experimental results that suggest the extent
to which throughput can be improved. In Section 5, we give analytical results, and in Section 6, we give
concluding remarks.

2 Background and Notation

It is convenient to represent the truth table of ann-variable function by a string of2n bits. For ex-
ample,f1(x1, x2, x3, x4) = x1x2x3x4 is represented asTT (f1) = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1), and
f2(x1, x2, x3, x4) = x1x2 ⊕ x3x4 is represented asTT (f2) = (0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0).

It is also convenient to represent ann-variable function in its algebraic normal form. Specifically,

Definition 2.1. Thealgebraic normal form (ANF) of a functionf is f =
∑

a∈F2
cax

a1

1 xa2

2 . . . xan

n ,

where
∑

is the exclusive OR,a = (a1, a2, . . . , an), ca, ai ∈ F2, x0
i = 1, andx1

i = xi. (c0 c1 . . . c2n−1)
is theANF representationof f .

Example 2.1. f1 = x1x2x3x4 has the ANFf = x1x2x3x4 and the ANF representationANF (f1) =
(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1). f2 = x1x2 ⊕ x3x4 has the ANFf2 = x1x2 ⊕ x3x4 and the ANF represen-
tationANF (f2) = (0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0). (End of Example)

The algebraic normal form of a function is also known as the positive polarity Reed-Muller form.

Definition 2.2. A linear function is the constant 0 function or the exclusive-OR of one or more variables.
Anaffine function is a linear function or the complement of a linear function.

Example 2.2. There are 16 linear functions on 4 variables, 0,x1, x2, x3, x4, x1 ⊕x2, x1 ⊕x3, x1 ⊕x4,
x2⊕x3,x2⊕x4, x3⊕x4, x1⊕x2⊕x3, x1⊕x2⊕x4, x1⊕x3⊕x4, x2⊕x3⊕x4, andx1⊕x2⊕x3⊕x4. The4-
variable affine functions consists of these functions and their complements. Note that, ifg(x1, x2, . . . xn)
is a linear function in ANF, then the ANF of its complement is1⊕ g. (End of Example)

Definition 2.3. TheHamming distanced(f, g) between two functionsf andg is the number of places
where their truth table representations differ.

Definition 2.4. Thenonlinearity NLf of a functionf is the minimum Hamming distance betweenf and
an affine function.

Example 2.3. f = x1x2x3x4 has nonlinearity 1, since converting the single 1 to a 0 in itstruth table
representation creates the truth table representation of the constant 0 function, which is affine.g =
x1x2⊕x3x4 has a distance 6 or 10 from any affine function. Thus, its nonlinearity is 6. (End of Example)

Definition 2.5. Let f be a Boolean function onn-variables, wheren is even.f is a bent function if its
nonlinearity is maximum amongn-variable functions.

Example 2.4. Rothaus [7] showed that bent functions have nonlinearity2n−1 − 2
n

2
−1. Thus,f =

x1x2x3x4 is not bent (NLf = 1), andg = x1x2 ⊕ x3x4 is bent (NLg = 6). (End of Example)

Definition 2.6. Thedegree of a product termis the number of variables in that term. Thedegree of a
function f is the maximum of the degrees among the product terms in the ANF of f .

Example 2.5. f = x1x2x3x4 has degree 4 andg = x1x2 ⊕ x3x4 has degree 2. (End of Example)

Definition 2.7. Functionsf andh belong to the sameaffine classif and only iff = h ⊕ a, wherea is
an affine function.

Example 2.6. f = x1x2x3x4, a non-bent function, belongs to an affine class of 32 functions. g =
x1x2 ⊕ x3x4, a bent function, belongs to an affine class of 32 functions. (End of Example)

Each affine class contains the same number of functions, namely 2n+1. Also, all functions in the
same affine class as a non-affine functionf have the same degree. This is because the ANF’s of two
functions in the same affine class differ only in the linear and constant coefficients. This same statement
is not true of the affine class of affine functions. In this class, thenontrivial functions have degree 1,
while the two trivial (constant) functions have degree 0.



3 Programming the SRC-6 Reconfigurable Computer to Sieve Bent
Functions

The SRC-6 reconfigurable computer is a product of SRC Computers, which was formed bySeymourR.
Cray in 1995. It has two Intel Pentium Xeon microprocessors through which the user interfaces with the
FPGAs. There are 10 FPGAs, four Xilinx Virtex-II XC2V6000 and six Virtex-Pro XC2VP100 FPGAs.
These are high-end FPGAs with more than 6 million transistors each. All run at a fixed clock frequency
of 100 MHz. To access the machine, one logs onto one of the two microprocessors, compiles the code
(some of which runs on the microprocessor and some on the FPGA(s)), and then executes it. During
execution, both the microprocessor and FPGAs are executing. For the sieving of bent function, we used
three programs 1) C code that runs on the microprocessor and initiates the process and prints/stores the
data obtained, 2) C code that runs on the FPGA and enumerates the functions under test, and 3) Verilog
code that runs on the FPGA and does most of the computation. Toease the burden on the programmer,
SRC Computers has supplied many system macros for use in C programs. This has helped to eliminate
the need for Verilog code. However, we found that Verilog code was an absolute necessity. Fig. 1 from
[14] shows the SRC-6’s compilation process, including place and route. Here, the box labeled ”µProc
Compiler” corresponds to code that is compiled into machinecode that runs on the microprocessor, while
the box labeled ”MAP Compiler” corresponds to code that is compiled into circuits on the FPGA. This
includes both C code and Verilog. Verilog code, in our version of the SRC-6, is compiled using Synplify
Pror.

 

Figure 1: The SRC-6’s compilation process [14].

Fig. 2 shows a circuit that enumerates all functions and computes their nonlinearity. On the left is a
counter that runs through all truth tables. This is described in C, and runs on the FPGA. To its right, the
circuit labeled ”Nonlinearity Computation” is described in Verilog and runs on the FPGA. To its right is
an oval labeled ”Update NL Counter”. This data collection part is done on the microprocessor. The data
it collects is exported to either Excel or MATLAB for display.

Nonlinearity

Computation
Update

NL Counter

NLFunction

Generator

Function 
Under 
Test

Figure 2: The nonlinearity enumeration circuit.

Fig. 3 shows the architecture ofNonlinearity Computation circuit of Fig. 2.Function shown on the



left is applied to a circuit consisting of a set ofm = 2n bitwise exclusive OR gates, whose other input is
an affine function. The output of each is a distance vector betweenFunction and an affine function. The
number of 1’s in each distance vector is the distance the function under test is from that affine function.
The circuitOnes Countcounts the 1’s and produces a binary number that is this count. This circuit was
shown by Komamiya [5] (and reformulated by Sasao [13]) to have an elegant form as basic symmetric
functions expressed as the exclusive-OR of product terms. We use 4-input LUTs and binary adders to
realize this circuit, which is easily scaled acrossn, wheren is the number of variables. Simple ripple-
carry adders are highly optimized for speed in the Xilinx Virtex-Pro FPGA, and can be easily adapted to
any reasonable wordwidth.
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Figure 3: The architecture of the Nonlinearity Computationcircuit [10].

Fig. 4 shows theOnes Countcircuit of Fig. 3. The 4-input LUTs are shown on the left side.A set
of three of these forms a 3-bit binary number that is 000, 001,010, 011, and 100, corresponding to 0, 1,
2, 3, or 4 1’s in the four inputs. These are applied to a tree of adders whose output is a binary number
representing the number of 1’s in the distance vector.

Fig. 5 shows theMinimum Circuit of Fig. 3. Like theOnes Countcircuit, it is a tree. In this
case, theMinimum circuit consists of 2-input 1-output comparator circuits in which the output is the
minimum of the two inputs.

Note that the Nonlinearity Computation circuit is combinational logic. Unfortunately, its delay ex-
ceeds 10 nsec., which is the period of the SRC-6’s 100 MHz clock. Therefore, in order to process one
function in each clock cycle, it is necessary to pipeline theNonlinearity Computation circuit so that the
delay in each stage is 10 nsec. or less. For example, in computing the bent functions forn = 6, the Non-
linearity Circuit needed eight stages. Since many prospective functions must be tested, the additional
latency due to the pipeline has little effect on the time of execution. Indeed, we ignore it in determin-
ing the time of execution. Table 1 from [10] compares the computation times required by an FPGA on
the SRC-6 reconfigurable computer with the computation times required by microprocessor used in the
SRC-6. The latter is an Intel Xeon microprocessor running at2.8 GHz. Table 1 showsn in the first
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column, the time for the Xeon microprocessor in the second column, the time for the FPGA in the third
column, and the speed-up factor in the right column. The speed-up factors range from 39.9 times for
n = 2 to 62,111 times forn = 8.

For n ≥ 6, the computation times for both the microprocessor and FPGAwere too large to run to
completion. In the case of the FPGA, we can calculate an accurate running time. In the case of the
microprocessor, we ran the program over a subset of all functions and then prorated to obtain the time it
would take to enumerate all functions.

Do we benefit from a speed-up when neither the FPGA nor the microprocessor can enumerate all
functions? Indeed, the answer is Yes. For example, Rothaus [7] showed that all bent functions are
contained in a set of functions whose degree isn

2
or less. Since the cardinality of this set is much less

than the set of all 6-variable functions, itis possible to enumerate all 6-variable bent functions by the
FPGA. Indeed, by enumerating only functions with degrees 3 or less, it required 5.7 minutes on an
FPGA. However, it would have taken 27 days on the microprocessor, which is 6,805.9 times longer, as
indicated in Table 1. We also achieved the 62,111 speed-up associated withn = 8 variable functions. In
this case, we enumerated all 8-variable rotation symmetricfunctions (c.f. Cusick and P. Stănică [2]) and
showed that the distribution of such functions is similar tothe distribution ofall functions with 4 and 5
variables [10].

Table 1: Speed-up obtained by the SRC-6 reconfigurable computer [10]

n PC Compute SRC-6 Compute Speed-up
Time Time Factor

(@2.8 GHz.) (@100 MHz)

2 6.38µsec. 0.16µsec. 39.9×
3 457.0µsec. 2.56µsec. 178.5×
4 0.388 sec. 655.4µsec. 592.0×
5 25.338 hours 42.9 sec. 2,126.3×
6 39,807,788 years 5,840 years 6,805.9×
7 2.05× 1027 years 1.08× 1023 years 19,005×
8 2.28× 1066 years 3.67× 1061 years 62,111×

4 Improving the Throughput

Although the FPGA has a much slower clock than the microprocessor, its speed of computation is much
faster because of parallelism. For example, the many addersin theOnes Countcircuit operate simulta-
neously in an FPGA, while these additions must be performed in serial on the microprocessor. However,
in spite of this improvement, the throughput of the FPGA can be improved further. We describe this here.
Unlike the previously discussed circuit, the following circuit has yet to be implemented.

One way to improve throughput is to simply replicate the circuit and simultaneously apply different
functions for testing. An inefficiency exists because of many unneeded tests of the distance to an affine
function. That is, it is sufficient to declare a function as non-bent if it fails one distance test. Yet, in all
the implementations discussed so far, for every prospective bent function, all distances are computed.

To achieve greater throughput, we propose thecircular pipeline . In its simplest form, there are2n

stages, where each stage tests the resident function against a linear function. If the resident function is not
a bent distance (either of2n−1 ± 2n/2−1) to the linear function, it is discarded and replaced by another
function. If the resident function is a bent distance, it moves onto the next stage. A function is bent if it
passes through all stages. Note that it is unnecessary to test against all affine functions; a function that is
a bent distance from all linear functions is a bent function.

Fig. 6 shows the architecture of the circular pipeline. On the left,2n function truth tables are clocked
into registerIn through a MUX. On the right,i truth tables leave this register and are inserted into the
circular pipeline, where0 ≤ i ≤ 2n. We assume that any or all of the truth tables fromIn leave and are
inserted into the circular pipeline. Those truth tables that are not inserted into the circular pipeline are
inserted into registerReservoir. This process is special. RegisterReservoiris similar to a shift register.
However, it has an interconnection matrix, shown asSwitch Network, that assures there are no ”gaps”



caused by elements of registerIn that went into the circular pipeline. RegisterReservoirstores2n+1

truth tables. These are truth tables that failed to go into the Circular Pipelinebecause of a truth table
that passed one test in theCircular Pipeline. TheSwitch Networkassures that the bottom register is fully
occupied with truth tables when it is applied to registerIn. When this is applied toIn, then the rest of
registerReservoiris moved down.
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Figure 6: Architecture of the circular pipeline

This circuit is significantly more efficient than any we have proposed previously. This is because any
function that fails a test is ejected immediately. However,its efficiency depends on the extent to which
non-bent functions fail a test for bentness. For example, this method would not be so efficient if most
non-bent functions had many bent distances to linear functions. Conversely, this method would be very
efficient if only bent functions were a bent distance away from linear functions. Indeed, in this case, it
would be necessary only to test whether a function was a bent distance from any linear function. This
presents us with a very interesting question: ”How long willan non-bent function persist in the circular
pipeline?”

A partial answer was derived by simulating the circular pipeline for 4-variable functions. In this
experiment, the truth tables were applied lexicographically, as(0, 0, . . . , 0, 0, 0), (0, 0, . . . , 0, 0, 1), (0, 0,
. . . , 0, 1, 0), . . ., (1, 1, . . . , 1, 1, 1), to a software simulation of the circular pipeline. From this, we com-
puted the distribution of clock periods that a function survived the pipeline. Fig. 7 shows the distribution
of functions to the time spent in the pipeline. For example, 49,698 of the 65,536 or 76% of the 4-variable
functions stayed in the pipeline for only one clock period. 8,130 or 12% stayed in the pipeline for only
two clock periods. 896 functions stayed in the pipeline for 16 clock periods. This last observation is an
expected result, since 896 functions are bent. The number oftimes a function stays in the pipeline is
called itspersistence. The average persistence is surprisingly small, 1.65. Indeed, from the data shown
in Fig. 7, we can declare a function to be bent if it stays in thepipeline for 10 or more clock periods. That
is, no non-bent function persists in the pipeline for 10 or more clock periods. Knowing this would save
some clock periods overall, since 896 of the 65,536 functions would have to stay in the pipeline only 10
clock periods instead of 16. We are interested in analyzing the throughput of the circular pipeline.

Definition 4.8. The throughputTn of a circular pipeline forn-variable bent functions is

Tn =
2n

Pavg

, (1)

wherePavg = 1
22

n

∑22
n

−1

i=0 P (fi) is the average persistence, forP (fi), the persistence of functionfi.

We know that1 ≤ Tn ≤ 2n. The lower bound occurs if all functions onn-variables are bent. The
upper bound occurs if every function is non-bent (and thus, fails its test immediately). For example, if
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Pavg = 1 (every function stays in the pipeline for exactly one clock period), thenTn = 2n, because, at
every clock all2n functions in the pipeline are replaced by2n new functions. This continues until there
are no more functions. Thus, in the sieve,2n functions are examined every clock period.

From this, we can say, for the 4-variable example, thatT4 = 22/1.65 = 9.7. That is, with the circular
pipeline, we can expect a throughput of nearly 10 times that of the circuit shown in Section 3. Note that,
in this calculation, we donot take advantage of the fact that a function can be declared bent and removed
from the pipeline after it has passed 10 stages.

If a function has zero bent weights, its persistence in Fig. 7is 1. However, a function with one
or more bent weights may also contribute to the functions with persistence 1. This is because such a
function was placed in the circular pipeline in a stage that tested it against a linear function which was
not a bent distance away. From this we conclude that the distribution of functions to persistence may be
different depending on the order in which functions are placed into the circular pipeline. Therefore, we
seek a persistence measure that is independent of this order.

Definition 4.9. Ann-variable function is said to have abent weight if at least one distance to an affine
function is2n−1 ± 2n/2−1 (the bent distance).

Example 4.7. An affine function has no bent weights. A bent function has2n+1 bent weights, the maxi-
mum. (End of Example)

Fig. 8 shows the distribution of 4-variable functions to thenumber of bent weights. For example, the bar
on the extreme left shows that 33,920 functions have no bent weights, while the bar on the extreme right
shows that 896 functions have 16 bent weights. The latter arethe bent functions. Near the middle are two
bars. These show that 3,840 functions have seven bent weights, while 26,880 have eight bent weights.
For such functions, the distances to affine functions are divided nearly in half between bent distances
and non-bent distances. Assuming these functions enter thecircular pipeline randomly, we expect that
approximately half of the time they will pass to the next stage and half of the time they will be rejected.
Note that all functions with 0 bent weights stay in the pipeline for one clock period. If a functions has
1 bent weight, it stays in the pipeline for either one or two clock periods. Similarly, functions with 8
bent weights stay in the pipeline for one, two, ... , or nine clock periods. Thus, we see in Fig. 7 a small
number of functions (227) with persistence 9. For such a function, the highly unlikely case occurred in
which all the eight stages through which it passed corresponded to the linear functions from which it was
a bent distance away. Bent functions stay in the pipeline for16 clock periods. They are ejected after 16
stages (not 17) even though they pass the last bent test.

It is interesting to note that the histogram of Fig. 7 shows a rise in the number of functions with
persistence 6 through 9. This is likely due to the concentration of 4-variable functions with 7 or 8 bent
weights. Indeed, there are three (local) peaks in the numberof functions with various persistence values
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(in Fig. 7) corresponding to the three peaks in the number of functions with various bent weights (in Fig.
8), near 0, 6-9, and 16.

The results of Fig. 8 beg the question of the bent weights ofn > 4. For example, does the large
number of functions with 0 bent weights also occur forn > 4? What form does the distribution of
functions to the number of bent weights take for other non-bent functions?
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To answer these questions, we repeated the analysis on4-variable functions on 10-variable functions.
It is impossible to enumerate alln-variable functions forn ≥ 6 because of excessive computation time.
However, one can enumerate randomn-variable functions. Doing this forn = 10 yields the plot of Fig.
9. The left plot shows the full plot. There are a large number of functions, 131,000, with no bent weights
(i.e. about half of all samples). This is shown as a single line on the extreme left. Just to its right is a small



group of functions where the number of bent weights is approximately 64. Bent functions have 1024 bent
weights, and they would be on the right, as indicated by the arrow. Because the sample size, 131,000, is
so small compared to the total number of functions,21024, no bent functions were enumerated. Indeed,
the largest number of bent weights in any non-bent function was found to be 151. The right plot is an
expanded version of the left plot. It shows clearly a distribution of functions centered around64 bent
weights. This plot shows that the majority of the functions would drop out of the circular pipeline after
90 clock periods. In the case ofn = 10, the circular pipeline is 1024 stages long. Indeed, since functions
with approximately 64 bent weights, and 64 is only one-sixteenth of 1024, most functions will drop out
well before 90 clock periods. In the case ofn = 10, the bent weights are496 and528.

Lemma 4.1. Let f andg be two functions in the same affine class (i.e. there exists anaffine functionh,
such thatf = g ⊕ h). Then,f andg have the same number of bent weights.

From Lemma 4.1, iff has2n bent weights, thenf is bent and so are all functions in the same affine class
asf . One seeks then an affine class in which all functions have many bent weights that also contains a
balanced function.

This suggests a new kind of nonlinearity. Functions that have 8 bent weights in Fig. 8 are closer
to bent functions than any other functions. Indeed, it can beseen, that a substantial number of these
functions are balanced; i.e. 10,080 of them have 8 1’s and 8 0’s. It is also interesting to note that such
functions can have nonlinearity no greater than 4, since thesmallest weight is 4 among the functions that
have 8 bent weights. Among 4-variable functions, the largest nonlinearity a function can have andnotbe
bent is 5.

5 Analytical Results

Lemma 5.2. The number of functionsN(NL,w) with nonlinearityNL and weightw is

N(NL,w) =

(

2n

w

)

, for 0 ≤ NL = w ≤ 2n−2. (2)

N(NL,w) =

(

2n−1

p0

)(

2n−1

p1

)

(2n+1
− 2),

where w = 2n−1 − p1 + p0,
for 0 ≤ NL = p0 + p1 ≤ 2n−2 − 1.

(3)

N(NL,w) =

(

2n

2n − w

)

, for 0 ≤ NL = 2n − w ≤ 2n−2. (4)

Proof: For all but two exceptions, the functions described above are the smallest distance to a single
affine function. For example, the functionf = x1x2 . . . xn with one 1 entry is a distance 1 away from
the constant 0 function (and a larger distance away from all other affine functions). The two exceptions
correspond to (2) forNL = w = 2n−2 and (4) forNL = 2n −w = 2n−2. Consider the first case only;
the second is similar. This corresponds to functions that have weight2n−2, and so are a distance2n−2

from the constant 0 function. Among these functions are somethat are a distance2n−2 from non-trivial
affine functions, but at no greater a distance. It follows that the non-linearity of all functions of weight
2n−2 is 2n−2.

Lemma 5.3. A function has odd weight iff it has odd nonlinearity.

Proof: All affine functions have even weight. Iff has even weight, all distances to affine functions are
even. Thus, the smallest distance is even, and it follows that the nonlinearity off is even. Conversely, if
the weight off is odd, then all distances to affine functions are odd. The smallest distance is odd, and so
f has odd nonlinearity.

Lemma 5.4. At least one-half of all functions have no bent weights.

Proof: Half of all functions have a truth table with an odd number of 1’s. From the proof of Lemma
5.3, all distances between such a function and an affine function are odd. Since a bent weight is even,
functions with odd weight have no bent weights.

Lemma 5.4 explains why more than half of all functions have nobent weights, as observed in Figs. 8
and 9.
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tances to affine functions forn = 4.
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Figure 11: Distribution of functions to weights
with the distance distributions in Fig. 10.

5.1 Distribution Among Distances to Affine Functions

We can gain insight into the distances between functions andaffine functions, by considering the dis-
tribution of distances. Fig. 10 shows the distribution of distances to affine functions among 4-variable
functions with various nonlinearities. For example, the top plot shows the distance distributions for affine
functions. That is, for any affine functionf , f is a distance 0 from an affine function (itself); it is a dis-
tance 16 from another affine function (f̄ ); and, it is a distance 8 from all of the other 30 affine functions.
In the case of a functionf with nonlinearity 1,f is a distance 1 from an affine function, a distance 7 from
15 affine functions, a distance 9 from 15 affine functions, anda distance 15 from one affine function.
This is shown in the second plot of Fig. 10. The last plot of Fig. 10 shows the bent functions. Here, each
bent function is a distance 6 from 16 affine functions and a distance 10 from the other 16 affine functions.
It is seen from Fig. 10 that, as the nonlinearity increases, the distribution of distances to affine functions
narrows. This is expected, since nonlinearity is a measure of themaximumdistance to affine functions.

Fig. 11 shows the distribution of functions with various nonlinearity values according to the func-
tion’s weight. For example, the top plot of Fig. 11 shows the distribution of weights for all functions
with nonlinearity 0, the affine functions. One has weight 0, the constant 0 function, one has weight 16,
the constant 1 function, and 30 have weight 8.

It is interesting that, in Figs. 10 and 11, that there aretwo distributions for nonlinearityNLf = 4.
The first, where four functions are a distance 4 from affine functions, 24 are a distance 8, and four
are a distance 12, correspond to products of two variables. For example,f = x1x2, whereTTf =
(0000000000001111) are a distance 4 from the four affine functions

g1 = 0(TTg1 = (0000000000000000)),

g2 = x1(TTg2 = (0000000011111111)),

g3 = x2(TTg3 = (0000111100001111)), and

g4 = 1⊕ x1 ⊕ x2(TTg4 = (1111000000001111)) .

Further,f = x1x2 is a distance 12 from the complement of these functions. And,it is a distance 8
from the remaining 24 affine functions. Note that this characterizes functions with this distribution of
distances to affine functions. Namely, they are the AND of twonontrivial affine functions exclusive ORed
with an affine function. The functions associated with the other distribution of distances corresponds to
all other functions with weight 4 or the exclusive OR of thosefunctions with an affine function.

Note that all 4-variable functions with nonlinearity0 ≤ NL ≤ 3 are the minimum distance from a
uniqueaffine function. All 4-variable functions with weight 4 havenonlinearityNL = 4. This same
statement isnot true of functions with nonlinearity5 ≤ NL ≤ 6. Forn = 5, there are

(

16

5

)

= 4, 368

functions with weight 5, but only 2,688 of them have nonlinearity 5. And, forn = 6, there are
(

16

6

)

=
8, 008 functions with weight 6, but only 448 of them have nonlinearity 6. The functions with weight 5 or
6 but not nonlinearity 5 or 6, have a lower value for nonlinearity. For example, there are 2,688 functions
with nonlinearity 5 and weight 5. We would compute this by observing that the only other nonlinearity
of 5 and weight 5 occur for functions with nonlinearity 3. There are 1680 such functions. However, there
are

(

16

5

)

= 4368 total with weight 5. Thus, the number of functions with weight 5 and nonlinearity 5
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Figure 12: All distributions of functions to dis-
tances to affine functions forn = 5.
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Figure 13: Distribution of functions to weights
with the distance distributions in Fig. 12.

must be
(

16

5

)

− 1680 = 2688. This gives one hope for computing the other values of nonlinearity and
weight.

There are two sources of function with nonlinearity 4. For one, the function is a distance 4 from 4
affine functions, a distance 8 from 24 affine function, and a distance 12 from 4 affine functions. These
functions have the formg1g2, whereg1 andg2 are distinct nontrivial affine functions that are not com-
plements of each other. For example, forg1 = x1 andg2 = x2, the functiong1g2 = x1x2 is a distance
4 fromg1, g2, 1⊕ g1 ⊕ g2, and the constant0 function. It is a distance 12 from the complement of these
four functions, all of which are also affine. And, it is a distance 8 from the other 24 affine functions. How
many functions have this distribution of distances to the affine functions? Among the 30 nontrivial affine
functions, there are

(

30

2

)

− 15 = 420 ways to choose distinct pairs of functions that are not complements
of each other. However, this number triple counts the numberof distinct functions. That is,g1g2 is
formed fromg1 ANDed withg2. But, there are two other pairs of distinct nontrivial affinefunctions that
are not complements of each other that can formg1g2, namely the pairs (g1 andḡ1 ⊕ g2) and (g1 ⊕ ḡ2
andg2). Thus, the total number of functions with this distribution of distances to the affine functions are
420/3 = 140.

The other set of functions with nonlinearity 4 have 1680 functions of weight 4 that are have nonlin-
earity 4, as shown in Fig. 11. There are

(

16

4

)

− 140 = 1, 680 of these.
Fig. 12 shows the same data forn = 5 as Fig. 10 does forn = 4. Here, there are too many bars

to label. But, the x-axis shows the distances a function can have to the 64 5-variable affine functions.
The y-axis shows an index for the 40 possible distributions.And, the vertical axis shows the number
of functions. Note that this is not thelog of number of functions; instead is the actual number. The
functions with high nonlinearity are in the front (to the right). Interestingly, there are two distributions
with maximum nonlinearity, 11, one correspond to 3 distances and the other 5 distances. This is to
be compared to the case of bent functions (and even number of variables), where there are always 2
distances.

Fig. 13 shows the distribution of weights of functions that have the distance distributions shown in
Fig. 12. This shows that the functions are concentrated in the regions of higher nonlinearity and this
number then drops off rapidly near the highest nonlinearity.

6 Concluding Remarks

We have demonstrated that there is a significant advantage tousing a reconfigurable computer to sieve
for bent functions. A speedup in computation time of more than 60,000 times is possible because of the
large amount of logic that can be configured to an architecture ideally suited to the problem. For example,
Figs. 4 and 5 show that many simultaneous additions and comparisons are needed. Although these are
performed much more slowly on an FPGA than on an Intel processor chip, they can be replicated enough
times that one function is tested every clock period of the FPGA’s 100 MHz’s clock. The code is easily
scalable. The use of parameters in Verilog allows the numberof variables to be specified in the top



module and then transmitted down to lower level modules.
It is likely that other problems are as well-suited to computation by reconfigurable computer. For

example, [1] discusses three cryptographic properties, strict avalanche criterion [3], [4], propagation
criterion, and correlation immunity [12], that potentially have efficient FPGA architectures. Still another
cryptographic property, algebraic immunity [6] may also have efficient architectures.

For implementation information on bent function discoveryby reconfigurable computer, see [8] and
[9].
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